Electrophysiological activity underlying inhibitory control processes in normal adults.

نویسندگان

  • Mariana Schmajuk
  • Mario Liotti
  • Laura Busse
  • Marty G Woldorff
چکیده

In a recent ERP study of inhibitory control using the Stop-Signal Task [Pliszka, S., Liotti, M., Woldorff, M. (2000). Inhibitory control in children with attention-deficit/hyperactivity disorder: Event-related potentials identify the processing component and timing of an impaired right-frontal response-inhibition mechanism. Biological Psychiatry, 48, 238-246], we showed that in normal children (age 10-12 years) the Stop Signals elicited a robust, right-frontal-maximal N200 (latency approximately 200 ms) that was strongly reduced in children with ADHD. To further investigate the mechanisms of response inhibition, this paradigm was applied to 11 healthy young adults. To better distinguish response-inhibition-related activity from early attentional effects, a "Stop-Signal-Irrelevant" condition was added, in which subjects performed the task while ignoring the Stop Signals. In the Stop-Signal-Relevant condition, the right frontal N200 to the Stop Signals was larger for Successful inhibition (SI) than for Failed inhibition (FI) trials. The timing and distribution of this effect was strikingly similar to that of the right-frontal ADHD deficit reported in Pliszka et al. (2000), supporting this activity being related to successful normal inhibitory control processes. In contrast, a posterior N200 was larger for Stop-Relevant than for Stop-Irrelevant trials, likely reflecting enhanced early sensory attention to the Stop Signals when relevant. Two longer-latency failure-specific ERP effects were also observed: a greater frontopolar negative wave (370-450 ms) to Failed than Successful inhibitions, and a greater parietal positive slow wave (450-650 ms) for Failed inhibitions than ignore-stop trials, likely reflecting differential recruitment of error detection and correction mechanisms following Failed attempts to inhibit a response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture

Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...

متن کامل

Explaining individual differences in cognitive processes underlying hindsight bias.

After learning an event's outcome, people's recollection of their former prediction of that event typically shifts toward the actual outcome. Erdfelder and Buchner (Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 387-414, 1998) developed a multinomial processing tree (MPT) model to identify the underlying processes contributing to this hindsight bias (HB) phenomenon. Mo...

متن کامل

Peroxisome Proliferator-activated Receptor (PPAR)-γ Modifies Aβ Neurotoxin-induced Electrophysiological Alterations in Rat Primary Cultured Hippocampal Neurons

Alzheimer’s disease (AD) is undoubtedly one of the serious and growing public health challenges in the world today. There is an unmet need for new and effective preventative and therapeutic treatment approaches for AD, particularly at early stages of the disease. However, the underlying mechanism against Aβ-induced electrophysiological alteration in cultured hippocampal pyramidal neurons  is st...

متن کامل

Retraction: Spontaneous pre-stimulus fluctuations in the activity of right fronto-parietal areas influence inhibitory control performance

Inhibitory control refers to the ability to suppress planned or ongoing cognitive or motor processes. Electrophysiological indices of inhibitory control failure have been found to manifest even before the presentation of the stimuli triggering the inhibition, suggesting that pre-stimulus brain-states modulate inhibition performance. However, previous electrophysiological investigations on the s...

متن کامل

Peroxisome Proliferator-activated Receptor (PPAR)-γ Modifies Aβ Neurotoxin-induced Electrophysiological Alterations in Rat Primary Cultured Hippocampal Neurons

Alzheimer’s disease (AD) is undoubtedly one of the serious and growing public health challenges in the world today. There is an unmet need for new and effective preventative and therapeutic treatment approaches for AD, particularly at early stages of the disease. However, the underlying mechanism against Aβ-induced electrophysiological alteration in cultured hippocampal pyramidal neurons  is st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuropsychologia

دوره 44 3  شماره 

صفحات  -

تاریخ انتشار 2006